管程-并发编程的万能钥匙
Java 语言在 1.5 之前,提供的唯一的并发原语就是管程,而且 1.5 之后提供的 SDK 并发包,也是以管程技术为基础的。
可以说,管程就是一把解决并发问题的万能钥匙。
为什么 Java 在 1.5 之前仅仅提供了 synchronized 关键字及 wait()、notify()、notifyAll() 这三个方法?
操作系统原理中我们知道信号量能解决所有并发问题,但是Java采用的是管程技术,synchronized关键字及wait、notify、notifyAll这三个方法都是管程的组成部分。
管程和信号量是等价的,所谓等价指的是用管程能够实现信号量,也能用信号量实现管程。
管程指的是管理共享变量以及对共享变量的操作过程,让他们支持并发。
MESA模型
管程发展史上,先后出现过三种不同的管程模型,
- Hasen 模型
- Hoare 模型
- MESA 模型【Java管程实现参考】
面对两大并发领域的核心问题:互斥和同步,管程都能解决。
互斥:同一时刻只允许一个线程访问共享资源;
同步:即线程之间如何通信、协作。这两大问题
如何解决互斥问题
管程 解决互斥问题:将共享变量及其对共享变量的操作统一封装起来。
- 管程 X 将共享变量 queue 这个队列和相关的操作入队 enq()、出队 deq() 都封装起来了;
- 线程 A 和线程 B 如果想访问共享变量 queue,只能通过调用管程提供的 enq()、deq() 方法来实现;
- enq()、deq() 保证互斥性,只允许一个线程进入管程。
管程模型和面向对象高度契合
如何解决同步问题
管程引入了条件变量的概念,而且每一个条件变量都对应有一个等待队列
在管程模型里,共享变量和对共享变量的操作是被封装起来的,图中最外层的框就代表封装的意思。框的上面只有一个入口,并且在入口旁边还有一个入口等待队列。当多个线程同时试图进入管程内部时,只允许一个线程进入,其他线程则在入口等待队列中等待。这个过程类似就医流程的分诊,只允许一个患者就诊,其他患者都在门口等待。
条件变量和等待队列的作用: 解决线程同步的问题。
假设有个线程 T1 执行出队操作,不过需要注意的是执行出队操作,有个前提条件,就是队列不能是空的,而队列不空这个前提条件就是管程里的条件变量。
如果线程 T1 进入管程后恰好发现队列是空的,那怎么办呢?等待啊,去哪里等呢?
就去条件变量对应的等待队列里面等。此时线程 T1 就去“队列不空”这个条件变量的等待队列中等待。这个过程类似于大夫发现你要去验个血,于是给你开了个验血的单子,你呢就去验血的队伍里排队。线程 T1 进入条件变量的等待队列后,是允许其他线程进入管程的。这和你去验血的时候,医生可以给其他患者诊治,道理都是一样的。
再假设之后另外一个线程 T2 执行入队操作,入队操作执行成功之后,“队列不空”这个条件对于线程 T1 来说已经满足了,此时线程 T2 要通知 T1,告诉它需要的条件已经满足了。当线程 T1 得到通知后,会从等待队列里面出来,但是出来之后不是马上执行,而是重新进入到入口等待队列里面。这个过程类似你验血完,回来找大夫,需要重新分诊。
条件变量及其等待队列我们讲清楚了,下面再说说 wait()、notify()、notifyAll() 这三个操作。前面提到线程 T1 发现“队列不空”这个条件不满足,需要进到对应的等待队列里等待。这个过程就是通过调用 wait() 来实现的。如果我们用对象 A 代表“队列不空”这个条件,那么线程 T1 需要调用 A.wait()。同理当“队列不空”这个条件满足时,线程 T2 需要调用 A.notify() 来通知 A 等待队列中的一个线程,此时这个队列里面只有线程 T1。至于 notifyAll() 这个方法,它可以通知等待队列中的所有线程。
这里我还是来一段代码再次说明一下吧。下面的代码实现的是一个阻塞队列,阻塞队列有两个操作分别是入队和出队,这两个方法都是先获取互斥锁,类比管程模型中的入口。
- 对于入队操作,如果队列已满,就需要等待直到队列不满,所以这里用了notFull.await();
- 对于出队操作,如果队列为空,就需要等待直到队列不空,所以就用了notEmpty.await();
- 如果入队成功,那么队列就不空了,就需要通知条件变量:队列不空notEmpty对应的等待队列。
- 如果出队成功,那就队列就不满了,就需要通知条件变量:队列不满notFull对应的等待队列。
1 | public class BlockedQueue<T>{ |
我们用了 Java 并发包里面的 Lock 和 Condition,如果你看着吃力,也没关系,后面我们还会详细介绍,这个例子只是先让你明白条件变量及其等待队列是怎么回事。需要注意的是:await() 和前面我们提到的 wait() 语义是一样的;signal() 和前面我们提到的 notify() 语义是一样的。
wait() 的正确姿势
对于 MESA 管程来说,有一个编程范式,就是需要在一个 while 循环里面调用 wait()。这个是 MESA 管程特有的。
1 | while(条件不满足) { |
Hasen 模型、Hoare 模型和 MESA 模型的一个核心区别就是当条件满足后,如何通知相关线程。管程要求同一时刻只允许一个线程执行,那当线程 T2 的操作使线程 T1 等待的条件满足时,T1 和 T2 究竟谁可以执行呢?
- Hasen 模型里面,要求 notify() 放在代码的最后,这样 T2 通知完 T1 后,T2 就结束了,然后 T1 再执行,这样就能保证同一时刻只有一个线程执行。
- Hoare 模型里面,T2 通知完 T1 后,T2 阻塞,T1 马上执行;等 T1 执行完,再唤醒 T2,也能保证同一时刻只有一个线程执行。但是相比 Hasen 模型,T2 多了一次阻塞唤醒操作。
- MESA 管程里面,T2 通知完 T1 后,T2 还是会接着执行,T1 并不立即执行,仅仅是从条件变量的等待队列进到入口等待队列里面。这样做的好处是 notify() 不用放到代码的最后,T2 也没有多余的阻塞唤醒操作。但是也有个副作用,就是当 T1 再次执行的时候,可能曾经满足的条件,现在已经不满足了,所以需要以循环方式检验条件变量。
notify() 何时可以使用
还有一个需要注意的地方,就是 notify() 和 notifyAll() 的使用,前面章节,我曾经介绍过,除非经过深思熟虑,否则尽量使用 notifyAll()。那什么时候可以使用 notify() 呢?需要满足以下三个条件:
- 所有等待线程拥有相同的等待条件;
- 所有等待线程被唤醒后,执行相同的操作;
- 只需要唤醒一个线程。
比如上面阻塞队列的例子中,对于“队列不满”这个条件变量,其阻塞队列里的线程都是在等待“队列不满”这个条件,反映在代码里就是下面这 3 行代码。对所有等待线程来说,都是执行这 3 行代码,重点是 while 里面的等待条件是完全相同的。
1 | while (队列已满){ |
所有等待线程被唤醒后执行的操作也是相同的,都是下面这几行:
1 | // 省略入队操作... |
同时也满足第 3 条,只需要唤醒一个线程。所以上面阻塞队列的代码,使用 signal() 是可以的。
Conclusion
Java 参考了 MESA 模型,语言内置的管程(synchronized)对 MESA 模型进行了精简。MESA 模型中,条件变量可以有多个,Java 语言内置的管程里只有一个条件变量。具体如下图所示。
Java 内置的管程方案(synchronized)使用简单,synchronized 关键字修饰的代码块,在编译期会自动生成相关加锁和解锁的代码,但是仅支持一个条件变量;而 Java SDK 并发包实现的管程支持多个条件变量,不过并发包里的锁,需要开发人员自己进行加锁和解锁操作。
并发编程里两大核心问题——互斥和同步,都可以由管程来帮你解决。学好管程,理论上所有的并发问题你都可以解决,并且很多并发工具类底层都是管程实现的,所以学好管程,就是相当于掌握了一把并发编程的万能钥匙。
思考
Q: wait() 方法,在 Hasen 模型和 Hoare 模型里面,都是没有参数的,而在 MESA 模型里面,增加了超时参数,你觉得这个参数有必要吗?
A:
1.管程是一种概念,任何语言都可以通用。
2.在java中,每个加锁的对象都绑定着一个管程(监视器)
3.线程访问加锁对象,就是去拥有一个监视器的过程。如一个病人去门诊室看医生,医生是共享资源,门锁锁定医生,病人去看医生,就是访问医生这个共享资源,门诊室其实是监视器(管程)。
4.所有线程访问共享资源,都需要先拥有监视器。就像所有病人看病都需要先拥有进入门诊室的资格。
5.监视器至少有两个等待队列。一个是进入监视器的等待队列一个是条件变量对应的等待队列。后者可以有多个。就像一个病人进入门诊室诊断后,需要去验血,那么它需要去抽血室排队等待。另外一个病人心脏不舒服,需要去拍胸片,去拍摄室等待。
6.监视器要求的条件满足后,位于条件变量下等待的线程需要重新在门诊室门外排队,等待进入监视器。就像抽血的那位,抽完后,拿到了化验单,然后,重新回到门诊室等待,然后进入看病,然后退出,医生通知下一位进入。
总结起来就是,管程就是一个对象监视器。任何线程想要访问该资源,就要排队进入监控范围。进入之后,接受检查,不符合条件,则要继续等待,直到被通知,然后继续进入监视器。
有hasen 是执行完,再去唤醒另外一个线程。能够保证线程的执行。hoare,是中断当前线程,唤醒另外一个线程,执行玩再去唤醒,也能够保证完成。而mesa是进入等待队列,不一定有机会能够执行。
MESA模型和其他两种模型相比可以实现更好的公平性,因为唤醒只是把你放到队列里而不保证你一定可以执行,最后能不能执行还是要看你自己可不可以抢得到执行权也就是入口,其他两种模型是显式地唤醒,有点内定的意思了。