基于循环神经网络实现语言模型。

对于语言模型的介绍

https://blog.csdn.net/RokoBasilisk/article/details/104303197

我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量$H$,用$H_{t}$表示$H$在时间步$t$的值。$H_{t}$的计算基于$X_{t}$和$H_{t-1}$,可以认为$H_{t}$记录了到当前字符为止的序列信息,利用$H_{t}$对序列的下一个字符进行预测。

构造(Structure)

我们先看循环神经网络的具体构造。假设 $\boldsymbol{X}_t \in \mathbb{R}^{n \times d}$ 是时间步 $t$ 的小批量输入,$\boldsymbol{H}_t \in \mathbb{R}^{n \times h}$ 是该时间步的隐藏变量,则:

【广播机制】

$$
\boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h).
$$

其中,$\boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h}$,$\boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h}$, $\boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h}$, $\phi$ 函数是非线性激活函数。

由于引入了 $\boldsymbol{H}_{t-1} \boldsymbol{W}_{hh}$,$H_{t}$ 能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。

由于$H_{t}$的计算基于$H_{t-1}$,上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。

在时间步$t$,输出层的输出为:

$$
\boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q.
$$
其中$\boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q}$,$\boldsymbol{b}_q \in \mathbb{R}^{1 \times q}$。

手动实现

实现一个基于字符级循环神经网络的语言模型,仍然使用周杰伦的歌词作为语料

下载地址:见语言模型一章【点击可直接下载】

1
2
3
4
5
6
7
8
9
10
# import package and module
import torch
import torch.nn as nn
import time
import math
import sys
sys.path.append("path to file storge d2lzh1981")
import d2l_jay9460 as d2l
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

one-hot向量

在此采用one-hot向量将字符表示成向量

假设词典大小是$N$,每次字符对应一个从$0$到$N-1$的唯一的索引,则该字符的向量是一个长度为$N$的向量,若字符的索引是$i$,则该向量的第$i$个位置为$1$,其他位置为$0$。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。

1
2
3
4
5
6
7
8
9
10
def one_hot(x, n_class, dtype=torch.float32):
result = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device) # shape: (n, n_class)
result.scatter_(1, x.long().view(-1, 1), 1) # result[i, x[i, 0]] = 1
return result

x = torch.tensor([0, 2])
x_one_hot = one_hot(x, vocab_size)
print(x_one_hot)
print(x_one_hot.shape)
print(x_one_hot.sum(axis=1))

每次采样的小批量的形状是(批量大小, 时间步数)。我们将其变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步$t$的输入为

$$
\boldsymbol{X}_t \in \mathbb{R}^{n \times d}
$$

其中$n$为批量大小,$d$为词向量大小,即one-hot向量长度(词典大小)

1
2
3
4
5
6
def to_onehot(X, n_class):
return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)

初始化模型参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# init module param
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: q

def get_params(): # 随机初始化
def _one(shape):
param = torch.zeros(shape, device=device, dtype=torch.float32)
nn.init.normal_(param, 0, 0.01) # 随机体现
return torch.nn.Parameter(param)

# 隐藏层参数
W_xh = _one((num_inputs, num_hiddens))
W_hh = _one((num_hiddens, num_hiddens))
b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))# 偏置参数
# 输出层参数
W_hq = _one((num_hiddens, num_outputs))
b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))# 偏置参数
return (W_xh, W_hh, b_h, W_hq, b_q)

定义模型

函数rnn用循环的方式依次完成循环神经网络每个时间步的计算。

1
2
3
4
5
6
7
8
9
10
def rnn(inputs, state, params): # 前向计算
# inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state # 提供了需要维护的状态的初始值 state定义成了元组
outputs = []
for X in inputs:
H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
Y = torch.matmul(H, W_hq) + b_q
outputs.append(Y)
return outputs, (H,) # 返回新的状态H,以便于相邻采样

函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。

1
2
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )

裁剪梯度(clip gradient)

针对梯度爆炸问题

循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。假设我们把所有模型参数的梯度拼接成一个向量 $\boldsymbol{g}$,并设裁剪的阈值是$\theta$。裁剪后的梯度

$$
\min\left(\frac{\theta}{|\boldsymbol{g}|}, 1\right)\boldsymbol{g}
$$

的$L_2$范数不超过$\theta$。

反向传播方式:时间反向传播【DPTT】

1
2
3
4
5
6
7
8
def grad_clipping(params, theta, device): # theta 预设的阈值
norm = torch.tensor([0.0], device=device)
for param in params:
norm += (param.grad.data ** 2).sum()
norm = norm.sqrt().item()
if norm > theta:
for param in params:
param.grad.data *= (theta / norm)

定义预测函数

基于前缀 prefix(含有数个字符的字符串)来预测接下来的 num_chars 个字符。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
# 模型处理前缀prefix,隐藏状态H就记录了相关信息,模型在处理prefix 最后一个字符时,就已经预测出了下一个字符,所以可以作为之后的输入
state = init_rnn_state(1, num_hiddens, device) # 构造并且初始化状态
output = [char_to_idx[prefix[0]]] # output记录prefix加上预测的num_chars个字符
for t in range(num_chars + len(prefix) - 1):
# 将上一时间步的输出作为当前时间步的输入
X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
# 计算输出和更新隐藏状态
(Y, state) = rnn(X, state, params)
# 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
if t < len(prefix) - 1:
output.append(char_to_idx[prefix[t + 1]])
else:
output.append(Y[0].argmax(dim=1).item()) # 最大的一列
return ''.join([idx_to_char[i] for i in output])

困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

交叉熵损失函数

损失函数详解:https://zhuanlan.zhihu.com/p/35709485

  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数。此处困惑度必须小于词典大小vocab_size

定义模型训练函数

跟之前章节的模型训练函数相比,这里的模型训练函数有以下几点不同:

  1. 使用困惑度评价模型。
  2. 在迭代模型参数前裁剪梯度。
  3. 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。

相邻采样,开始的时候初始化隐藏状态,容易引起开销过大,通常将隐藏状态分离

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
vocab_size, device, corpus_indices, idx_to_char,
char_to_idx, is_random_iter, num_epochs, num_steps,
lr, clipping_theta, batch_size, pred_period,
pred_len, prefixes):
if is_random_iter:
data_iter_fn = d2l.data_iter_random # 随机采样
else:
data_iter_fn = d2l.data_iter_consecutive #相邻采样
params = get_params()
loss = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
if not is_random_iter: # 如使用相邻采样,在epoch开始时初始化隐藏状态
state = init_rnn_state(batch_size, num_hiddens, device)
l_sum, n, start = 0.0, 0, time.time()
data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
for X, Y in data_iter:
if is_random_iter: # 如使用随机采样,在每个小批量更新前初始化隐藏状态
state = init_rnn_state(batch_size, num_hiddens, device)
else: # 否则需要使用detach函数从计算图分离隐藏状态
for s in state:
s.detach_()
# inputs是num_steps个形状为(batch_size, vocab_size)的矩阵
inputs = to_onehot(X, vocab_size)
# outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
(outputs, state) = rnn(inputs, state, params) #循环神经网路的前向计算
# 拼接之后形状为(num_steps * batch_size, vocab_size)
outputs = torch.cat(outputs, dim=0) # 拼接
# Y的形状是(batch_size, num_steps),转置后再变成形状为
# (num_steps * batch_size,)的向量,这样跟输出的行一一对应
y = torch.flatten(Y.T)
# 使用交叉熵损失计算平均分类误差
l = loss(outputs, y.long())

# 梯度清0
if params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
grad_clipping(params, clipping_theta, device) # 裁剪梯度
d2l.sgd(params, lr, 1) # 因为误差已经取过均值,梯度不用再做平均
l_sum += l.item() * y.shape[0]
n += y.shape[0]

if (epoch + 1) % pred_period == 0:
print('epoch %d, perplexity %f, time %.2f sec' % (
epoch + 1, math.exp(l_sum / n), time.time() - start))
for prefix in prefixes:
print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

训练模型并创作歌词

  • 设置超参数
  • 前缀:“分开”和“不分开”
  • 歌词长度:50个字符(不考虑前缀长度)
  • 周期:50
  • 采样方式:随机采样 && 相邻采样
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# set super param
num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
# set prefix and recurrent
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
# training by random sampling
train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
vocab_size, device, corpus_indices, idx_to_char,
char_to_idx, True, num_epochs, num_steps, lr,
clipping_theta, batch_size, pred_period, pred_len,
prefixes)
# training by adjacent sampling
train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
vocab_size, device, corpus_indices, idx_to_char,
char_to_idx, False, num_epochs, num_steps, lr,
clipping_theta, batch_size, pred_period, pred_len,
prefixes)

简化实现

定义模型

使用 Pytorch 中的 nn.RNN 构造神经网络

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 定义一个基于循环神经网络的语言模型
class RNNModel(nn.Module):
def __init__(self, rnn_layer, vocab_size): #rnn_layer 是pytorch中的一个类
super(RNNModel, self).__init__()
self.rnn = rnn_layer
self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1)
self.vocab_size = vocab_size
self.dense = nn.Linear(self.hidden_size, vocab_size) #定义一个线性层作为输出层

def forward(self, inputs, state):
# inputs.shape: (batch_size, num_steps)
X = to_onehot(inputs, vocab_size)
X = torch.stack(X) # X.shape: (num_steps, batch_size, vocab_size)
hiddens, state = self.rnn(X, state)
hiddens = hiddens.view(-1, hiddens.shape[-1]) # hiddens.shape: (num_steps * batch_size, hidden_size)
output = self.dense(hiddens)
return output, state

预测函数

1
2
3
4
5
6
7
8
9
10
11
12
def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
char_to_idx):
state = None
output = [char_to_idx[prefix[0]]] # output记录prefix加上预测的num_chars个字符
for t in range(num_chars + len(prefix) - 1):
X = torch.tensor([output[-1]], device=device).view(1, 1)
(Y, state) = model(X, state) # 前向计算不需要传入模型参数
if t < len(prefix) - 1:
output.append(char_to_idx[prefix[t + 1]])
else:
output.append(Y.argmax(dim=1).item())
return ''.join([idx_to_char[i] for i in output])

训练

采用相邻采样

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# training function
def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
corpus_indices, idx_to_char, char_to_idx,
num_epochs, num_steps, lr, clipping_theta,
batch_size, pred_period, pred_len, prefixes):
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr) #优化模型参数
model.to(device)
for epoch in range(num_epochs):
l_sum, n, start = 0.0, 0, time.time()
data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
state = None #构造 并初始化
for X, Y in data_iter:
if state is not None:
# 使用detach函数从计算图分离隐藏状态
if isinstance (state, tuple): # LSTM, state:(h, c)
state[0].detach_()
state[1].detach_()
else:
state.detach_()
(output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)
y = torch.flatten(Y.T)
l = loss(output, y.long())

optimizer.zero_grad()
l.backward()
grad_clipping(model.parameters(), clipping_theta, device)
optimizer.step()
l_sum += l.item() * y.shape[0]
n += y.shape[0]


if (epoch + 1) % pred_period == 0:
print('epoch %d, perplexity %f, time %.2f sec' % (
epoch + 1, math.exp(l_sum / n), time.time() - start))
for prefix in prefixes:
print(' -', predict_rnn_pytorch(
prefix, pred_len, model, vocab_size, device, idx_to_char,
char_to_idx))

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
corpus_indices, idx_to_char, char_to_idx,
num_epochs, num_steps, lr, clipping_theta,
batch_size, pred_period, pred_len, prefixes)